考虑[0,π]上一类带周期边条件的右定Sturm-Liouville问题,利用函数论方法解决了其特征值的存在与分布问题,证明了特征值集合与λ的一整函数的零点集合重合,特征值的秩与零点重数一致,并得出其特征值与特征函数的渐近表示.
In this pater,the eigenvalues and eigenfunctions of a fight-definite S-L problem is studied with periodic boundary conditions in [0,π]. With the method of function theory, the problem of existence and distribution of the eigenvalues is solved,and proved that the eigenvalue set and zero set of a whole function of are same,the rank of eigenvalue and zero multiple number are conincident. At last, the asymptotic expansion of the eigenvalues and eigenfunctions are obtained.