位置:成果数据库 > 期刊 > 期刊详情页
一种推挽式电路故障诊断方法的仿真研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.9[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西北工业大学自动化学院,陕西西安710072
  • 相关基金:国家自然科学基金重点项目(60134010)
中文摘要:

提出了基于小波变换和神经网络的推挽式电路故障诊断方法。先仿真得到各种故障状态下的输出电压信号,然后对输出电压信号进行Daubechies小波变换获取多尺度低频系数和高频系数,并对小波系数进行处理提取故障特征量,最后利用故障特征矢量训练神经网络确定了推挽式电路故障诊断的神经网络模型。仿真结果表明基于小波变换和神经网络的推挽式电路故障诊断方法取得了较好的效果。

英文摘要:

A fault diagnosis method based on wavelet transform and neural networks for push-pull circuits is presented. Firstly, output voltage signals of the push-pull circuits under faulty conditions are obtained with simulation, Then approximation and detail coefficients of output voltage signals are gotten by Daubechies wavelet transform, and are disposed to extract faulty features, After training the networks by faulty feature vectors, the neural networks model of the fault diagnosis system for the push-pull circuits is built. The simulation result shows the fault diagnosis method on wavelet transform and neural networks for the push-pull circuits has good effect.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049