位置:成果数据库 > 期刊 > 期刊详情页
基于支持向量机及小波变换的人参红外光谱分析
  • ISSN号:1000-0593
  • 期刊名称:《光谱学与光谱分析》
  • 时间:0
  • 分类:O657.3[理学—分析化学;理学—化学]
  • 作者机构:[1]吉林大学超分子结构与材料国家重点实验室,吉林长春130012, [2]吉林大学地面机械仿生技术教育部重点实验室,吉林长春130022, [3]吉林工程技术师范学院信息工程学院,吉林长春130052
  • 相关基金:国家自然科学基金项目(50635030)和吉林省科技厅重点项目(20060902-02,200705c07)资助
中文摘要:

以吉林名贵中药材人参作为研究的主要对象,详细研究了利用小波变换技术对红外光谱变量的压缩方法和实现过程,以及如何利用人工神经网络(ANN)和支持向量机(SVM)技术建立人参的红外光谱的产地鉴别模型,并详细讨论了ANN模型中相关参数的优化方法以及SVM模型中的核函数及σ值的优化选择。仿真实验表明,建立的ANN模型对40个吉林人参样品产地识别率达到92.5%,而采用径向基核函数的SVM模型的识别率为97.5%,其分类效果明显优于ANN模型。从而表明小样本的情况下,利用SVM结合小波变换技术可以对吉林人参的红外光谱的产地特征进行正确区分,同时为中草药的红外光谱的进一步的分析和研究提供了一定理论依据和技术支持。

英文摘要:

In the present study, 40 samples of ginsengs (20 samples from Jian and 20 samples from Fushun) were surveyed by Fourier transform infrared (IR) spectroscopy. Meanwhile, in order to eliminate the spectral differences from the baseline drifts, the original ginseng spectra were processed using first derivative method. To avoid enhancing the noise resulting from the derivative the spectra were smoothed. This smoothing was done by using the Savitzky-Golay algorithm, a moving window averaging method. Artificial neural network (ANN), support vector machine (SVM) as the new pattern recognition technology, and wavelet transform (WT) were applied. Firstly, the spectrum variables of infrared spectroscopy were compressed through the WT technology before the models were established, in order to reduce the time in establishing models. Then, the identification models of cultivation area of ginsengs were studied comparatively by the use of ANN and SVM methods. The corresponding important parameters of models were also discussed in detail, including the parameters of wavelet compressing and training parameters of ANN and SVM models. The simulation experiment indicated that the ANN model can carry on the distinction among 40 samples of ginsengs from Jilin, and the accuracy rate of identification was 92.5%. The radial basis function (RBF) SVM classifiers and the polynomial SVM classifiers were studied comparatively in this experiment. The best experimental results were obtained using RBF SVM classifier with σ=0.6, and the accuracy rate of identification was 97.5%. Finally, compared with ANN approach, SVM algorithm showed its excellent generalization for identification results while the number of samples was smaller. The overall results show that IR speetroseopy combined with SVM and WT technology can be efficiently utilized for rapid and simple identification of the cultivation area of ginsengs, and thus provides the certain technology support and the foundation for further researching ginseng and other IR

同期刊论文项目
期刊论文 174 获奖 5 著作 1
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642