矩阵A的特征值的集合(含重数)记为σ(A),A的惯量是指三元有序数组i(A)=(i+(A),i_(A),i0(A)),其中i+(A),i_(A)和i0(A)分别表示具有正,负,零实部特征值的个数.n阶符号模式矩阵S=(sij)是指元素取自{1,-1,0)或者{+,-,0)的矩阵,S的定性矩阵类是指集合Q(S)={A=(aij)∈Mn(R):对所有的i和j,sign(aij)=sij}.S的惯量是指集合i(S)={i(A):A∈Q(S)}.若对任意满足n1+n2+n3=n的非负三元数组(n1,n2,n3),都有(n1,n2,n3)∈i(S),则称符号模式S为惯量任意模式.考虑n阶符号模式Kn=(kij)n×n;当1≤j—i≤n-2或i=j=n时,kij=1;当1≤i-j≤n-2或i=j=1时,kij=-1;当|i-j|=n-1时,kij可以取任意固定值;其余情形时,kij=0.本文证明了Kn(n≥3)是惯量任意模式.
The set of all eigenvalues (counting multiplicities) of a matrix A is denoted by σ(A) ,and the inertia of A is the ordered triple i(A)=(i+ (A),i_(A),io(A)),in which i+ (A),i_(A) and io(A) are the numbers of eigenvalues with positive, negative and zero real parts, respectively. An n × n sign pattern S=(sij ) has sij∈ { 1,-1,0} or sij ∈ { +,-, 0 }, and the qualitative class of S is Q(S) = {A= (aij)∈ M. (R) : sign(aij ) = sij for all i,j}. The inertia of S is the set of ordered triplesi(S)={i(A):A∈Q(S)}. An n×n sign pattern S is an inertially arbitrary pattern (IAP) if (n1,n2,n3)∈ i(S) for each nonnegative triple (n1 ,n2, n3 ) with n1 + n2 + n3 = n. Consider the n × n sign pattern Kn, where K. is the pattern with positive entry (i,j) for 1≤ j-i≤n-2 or i=j=n,negative entry (i,j) for 1≤ i-j≤n-2 or i=j=1,arbitrary entry (i,j) for |i-j| =n-1 and zero entry otherwise. In this paper,it is proved that K, is an IAP for n≥3.