设G是一个图,G的部分平方图G^*满足V(G^*)=V(G),E(G^*)=E(G)∪{uv:uv E(G),且J(u,v)≠ ),这里J(u,v)={w∈N(u)∩(v):N(w) N[u]∪N[v]).利用插点方法,证明了如下结果:设G是k-连通图(k≥2),b是整数,0〈b〈k+1.若对于图G的部分平方图G^*的任一独立集Y={y0,y1,…,yk),在G中有∑(i=1→k)|N(yi)|+b|N(y0)|〉min{k,2b-1+k/2}(n(Y)-1),则G是哈密尔顿图.同时给出图是1-哈密尔顿的和哈密尔顿连通的相关结果.
Let G be a graph, the partially square graph G^* of G is a graph satisfying V(G^*) =V(G) and E (G^*)=E(G)∪{uv: uv E (G), and J(u,v) ≠ }, In this paper, we will use the technique of the vertex insertion to prove the following result: Let G be a k-connected graph with k ≥ 2;b an integer, and 0 〈 b 〈 k + 1. If ∑(i=1→k)|N(yi)|+b|N(y0)|〉min{k,2b-1+k/2}(n(Y)-1) in G for eech Y = {y0,y1,…,yk} ∈ Ik+1(G^*), then G is hamiltonian. In addition, the corresponding results on 1-hamiltonian or hamilton-connected are obtained, too.