设F是域,令Gn(F)={{a,φn(a)}∈K2(F)| a,Φn(a)∈F^*},这里Φn(x)是n次分圆多项式.使用函数域的ABC定理证明了若F是常数域为k函数域,l≠ch(k)是素数,则对n≥3且l〉2或n〉3且l=2,G(ln)(F)不是K2(F)的子群.由此部分地证实了Browkin的猜想.
Let F be a field and let G_n(F)={{a,Φ_n(a)}∈K_2(F)|a,Φ_n(a)∈F~*}, whereΦ_n(x) denotes the n-th cyclotomic polynomial.If F is a function field with perfect constant field k and l≠ch(k) a prime number,it is proved by using the ABC theorem for function fields that G_(ln)(F) is not a subgroup of K_2(F) if n≥3 and l2 or n3 and l=2,which confirms a conjecture of Browkin partially.