设F是域,记Gn(F)={{x,φn(x)}∈K2(F)|x,φn(x)∈F*},其中中。(x)表示n次分圆多项式。利用tame符号的取值证明了G5(F2(x))不是K2(F2(x))的子群,从而部分的证实了Browkin的一个猜想。
Let F be a field and Gn(F)={{x,φn(x)}∈K2(F)|x,φn(x)∈F*}, where qbn(x) denotes the n- th cyclotomic polynomial. It is proved, by using the tame symbols, that G5 (F2 (x)) is not a subgroup of K2 (F2 (x)), which confirms partially a coniecture of Browkin.