文中研究了Hamilton-Jacobi方程ut+H(u,Du)=0,(p,t)∈G×(0,∞),这里G是Carnot群,Du表示u的水平梯度。当函数H(γ,x)对变量γ∈R^m是凸的、径向且一阶齐次时,建立了该方程在有界连续初值u(p,0)=g(p)下有界粘性解的存在唯一性,其解由Hopf-Lax公式给出u(p,t)=q∈G^min{h(t^——q^-1.p)∨g(q)},其中函数h是由函数H(γ,x)关于变量x∈R^m的拟凸对偶提升到G上的,且关于Carnot-Carathéodory距离是径向的。
In this paper the author consider Hamilton-Jacobi equations ut+H(u, Du) = 0 in the G× (0, +∞), where G is Carnot group and Du denotes the horizontal gradient of u. When H(γ,x) is assumed to be nondecreasing in γ∈R and convex and radial andpositively homogeneous of degree 1 in x∈R^m, the uniqueness of bounded viscosity solutions is established with bounded continuous initial data u(p, O) = g(p), the solution is given by the Hopf-Lax formula u(p,t)=q∈G^min{h(t^--q^-1.p)∨g(q)} where h is the quasiconvex dual of (γ,x) in x E Rm lifted to G by requiring it to be radial with respect to the Carnot-Carathéodory metric.