在线性模型为的回归参数的 M 评估者的强壮的一致性[(r)\tilde ] 在一些温和条件下面的 \tilde 混合 ho 随机错误被建立,它是在在片刻条件和混合错误上的文学的相关结果上的必要改进。特别,吴(2005 ) 的定理在片刻条件上实质上被改进。
The strong consistency of M estimators of the regression parameters in linear models for ρ-mixing random errors under some mild conditions is established, which is an essential improvement over the relevant results in the literature on the moment conditions and mixing errors. Especially, Theorem of Wu (2005) is improved essentially on the moment conditions.