位置:成果数据库 > 期刊 > 期刊详情页
非均衡数据的支持向量机新方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西北工业大学自动化学院,西安710072, [2]西安电子科技大学应用数学系,西安710071
  • 相关基金:国家自然科学基金资助项目(60574075);陕西省自然科学基金资助项目(2005F45)
中文摘要:

为了弥补支持向量机对非均衡样本集分类时倾向于较大类的不足,提出一种平衡策略。基于Fisher判别思想,计算出两类样本在分类超平面法向量上投影后的均值和方差,再依据两类错分概率相等准则,给出新的阈值计算方法对超平面进行调整。该方法可补偿非平衡数据分类的倾向性,提高预测分类精度。最后在非均衡的人工和真实数据集上的数值实验表明了该方法的可行性与有效性。

英文摘要:

Since support vector machine is unfair to the rare class for the classification of imbalanced data, proposed an adjustment method of the separating hyperplane. Based on Fisher discrimination, got the projected class mean and variance are by projecting two classes samples onto the normal vector of the separating hyperplane, then adjusted the threshold of the hyperplane, according to the principle that error probability of two classes are equal. The proposed algorithm could compensate the ill-effect of tendency and improved the accuracy. Simulations on imbalanced artificial and real data show that the feasibility and validity of the proposed method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049