这篇论文基于概括趋于增加的更改建议支持向量用机器制造的一个新奇超球面(HSVM ) 。这个算法能获得从分类测试的这条边界取样的一个班和使用由对训练样品的描述包含样品的一个班的超球面的边界。概括趋于增加的更改被用于解决边界优化编程。可得到的趋于增加的更改适合非否定的二次的凸的编程。概括趋于增加的更改被导出在这篇论文关并且加抑制二次的编程。他们提供一个极其直接的方法实现所有变量在平行被更新的支持向量机器(SVM ) 。概括趋于增加的更改 monotonically 收敛到最大的边缘的答案亢奋的飞机。实验显示出我们的新算法的优势。
This paper proposes a novel hypersphere support vector machines (HSVMs) based on generalized multiplicative updates. This algorithm can obtain the boundary of hypersphere containing one class of samples by the description of the training samples from one class and use this boundary to classify the test samples. The generalized multiplicative updates are applied to solving boundary optimization progranmning. Multiplicative updates available are suited for nonnegative quadratic convex programming. The generalized multiplicative updates are derived to box and sum constrained quadratic programming in this paper. They provide an extremely straightforward way to implement support vector machines (SVMs) where all variables are updated in parallel. The generalized multiplicative updates converge monotonically to the solution of the maximum margin hyperplane. The experiments show the superiority of our new algorithm.