位置:成果数据库 > 期刊 > 期刊详情页
用于在线数据分类的半监督最接近支持向量机
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]河南科技大学理学院,河南洛阳471003, [2]中国人民解放军96251部队
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60574075).
中文摘要:

为了解决当已分类完未标号样本,又有新的未标号样本的半监督学习问题,提出了能用于在线数据分类的半监督最接近支持向量机。在人工数据和CUI数据集上的实验显示,不因标号数据的增多而提高分类性能,未标号数据基本上不降低其分类性能,因此算法可在线使用。

英文摘要:

To solve the problem of semi-supervised learning such that after the unlabeled data is labeled,new unlabeled data arrives, semi-supervised proximal support vector machine for on-line data classification is introduced.Experimental results on artificial and real data support that the performance of the proposed algorithm isn't improved as the number of labeled data increases and unlabeled data also doesn't decrease the performance.Thus the proposed algorithm can be used on-line.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887