位置:成果数据库 > 期刊 > 期刊详情页
基于SVDD的渐进直推式支持向量机学习算法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西安电子科技大学应用数学系,西安710071, [2]河南科技大学数学系,洛阳471003, [3]洛阳师范学院数学系,洛阳471022
  • 相关基金:国家自然科学基金资助项目(No.60574075,60703118)
中文摘要:

针对半监督学习中渐进直推支持向量机(PTSVM)算法每次标注的样本数太少、训练速度慢、回溯式学习多、学习性能不稳定的问题,提出一种快速的渐进直推支持向量机学习算法.该算法利用支持向量的信息,基于支持向量域描述(SVDD)选择新标注、无标签的样本点,以区域标注法代替PTSVM的成对标注法,不仅继承了其渐进赋值和动态调整的规则,而且在保持甚至提高算法精度的同时,大大提高算法速度.在人工模拟数据和真实数据上的实验结果表明该算法的有效性.

英文摘要:

In semi-supervised learning, progressive transductive support vector machine (PTSVM) has some drawbacks, such as few sample labeled in each iteration, low training speed, many backtrack learning steps, and unstable learning performance. Aiming at these problems, a fast progressive transductive support vector machines learning algorithm is proposed. It selects new unlabeled samples based on support vector domain description (SVDD) by using the information of support vectors. Using region labeling rule instead of pairwise labeling rule of PTSVM, the algorithm inherits progressive labeling and dynamic adjusting of the PTSVM. And meanwhile it increases the computational speed and keeps even improves the accuracy. Experimental results on synthetic and real datasets show the validity of the proposed algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169