在黎曼流形上建立非光滑函数分析工具的基础上,把具有等式和不等式约束的非可微多目标数学规划问题扩展到黎曼流形上,利用Ekeland变分原理,推导出弱帕雷托最优解广义梯度形式的Fritz-John型必要最优性条件.
On the basis of the nonsmooth tools established on Riemannian manifolds, the nondifferentiable multiobjective optimization problems with equality and inequality constraints are extended from Euclidean space to Riemannian manifolds. Via Ekeland variational principle, the Fritz-John necessary conditions with generalized gradient formula for weak Pareto optimal solutions are derived.