研究奇异非线性二阶m点边值问题{-(Lψ)(x)=h(x)f(ψ(x)),0<x<1,ψ(0)=0,ψ(1)=∑^m-2 i=1aiψ(ξi)应用不动点指数方法,在与相应的线性算子第一特征值有关的条件下获得了正解的存在性结果,本质上改进了文献[1]中的主要结论.
The singular second-order m-point boundary value problem {-(Lψ)(x)=h(x)f(ψ(x)),0〈x〈1,ψ(0)=0,ψ(1)=∑^m-2 i=1aiψ(ξi) is considered under some conditions concerning the first eigenvalues corresponding to the relevant linear operators. The existence of positive solutions is obtained by means of fixed point index theory. The conclusions in this paper perfect the main results in [1].