本文研究奇异非线性Sturm-Liouville问题{-(Lφ)(x)=h(x)f(φ(x)),0〈x〈1,R1(φ)=α1φ(0)+β1φ'(0)=0, R2(φ)=α2φ(0)+β2φ'(0)=0其中(Lφ)(x)=(p(x)φ'(x))'+q(x)φ(x),并且允许h(x)在X=0和X=l奇异.应用锥理论和不动点指数方法,在与相应的线性算子第一特征值有关的条件下获得了正解的存在性结果,本质地推广和改进了文献[1-9]中的主要结论.
The singular nonlinear Sturm-Liouville problem {-(Lφ)(x)=h(x)f(φ(x)),0〈x〈1,R1(φ)=α1φ(0)+β1φ'(0)=0, R2(φ)=α2φ(0)+β2φ'(0)=0 is considered under some conditions concerning the first elgenvaiues corre~lguuu~u~ ~' the relevant linear operators, where (Lφ)(x)=(p(x)φ'(x))'+q(x)φ(x) and h(x) is allowed to be singular at both x = 0 and x = 1. The existence results of positive solu- tions are given by means of the cone theory and the fixed point index. The conclusions in this paper essentially extend and improve the main results in [1-9].