本文研究了奇异二阶常微分方程边值问题 {u″(t)+h(t)f(u(t))=0, 0〈t〈1,;αu(0)-βu′(0)=0, γu(1)+δu′(1)=1, 其中α,β,γ,δ≥0,ρ=αγ+γβ+δα〉0,并且允许h(t)在t=0和t=1处奇异,f(s)在s=0处奇异.在关于相应线性算子第一特征值的条件下,得到正解的存在性结论.
The existence of positive solutions to singlar second-order boundary value problem {u″(t)+h(t)f(u(t))=0, 0〈t〈1,;αu(0)-βu′(0)=0, γu(1)+δu′(1)=1, is considered, under some conditions concerning the eigenvalues of relevant linear operator, where α,β,γ,δ≥0,ρ=αγ+γβ+δα〉0 and h(t) is allowed to be singular at t = 0 and t = 1, and f (s) is allowed to be singular at s = 0.