考察了非线性方程m点边值问题{u^n(t)+a(t)u′(t)+b(t)u(t)+f(t,u)=0,0≤t≤1,u(0)=0,u(1)=^m-2∑i=1aiu(ζi),的正解的存在性与多解性,设α∈C([0,1],(-∞,0));设φ1(t)为线性方程边值问题{u^n(t+)a(t)u′(t)+b(t)u(t)=0,0≤t≤1,u(0)=0,u(1)=1,的唯一正确,其中ζi∈(0,1),αi∈(0,+∞)为满足^m-2∑i-1α1φ1(ζi)〈1的常数,i∈{1,2,……,m-2},通过考察,在有界集上的性质。运用Krasnosel skii锥拉伸与锥压缩型不动点定理及格林函数的性质。获得了其正解的存在性与多解性,推广和改进了已有的相关结果。
A class of nonlinear m-point boundary value problems was considered, and the existence and multiplicity of positive solutions was obtained by making use of the Krasnosel'skii fixed point theorem of cone expanslon-compression type.