该文在有关相应线性算子特征值的条件下,讨论非线性(k,n-k)共轭边值问题 {(-1)^n-kφ^(n)(x)=h(x)f(φ(x)),0〈x〈1,n≥2,0〈k〈n, φ^(i)(0)=φ^(j)(1)=0,0≤i≤k-1,0≤j≤n-k-1. 允许h(x)在x=0和x=1奇异.利用锥上的不动点指数理论获得了正解和多重正解的存在性.
Nonlinear (k, n - k) conjugate boundary value problem {(-1)^n-kφ^(n)(x)=h(x)f(φ(x)),0〈x〈1,n≥2,0〈k〈n, φ^(i)(0)=φ^(j)(1)=0,0≤i≤k-1,0≤j≤n-k-1. is considered under some conditions concerning the eigenvalues of relevant linear operator, h(x) is allowed to be singular at x = 0 and x = 1. The existence of positive solutions and multiple positive solutions is obtained bv means of fixed point index theory on cone.