位置:成果数据库 > 期刊 > 期刊详情页
基于变精度粗糙集的分类决策树构造方法
  • ISSN号:1001-506X
  • 期刊名称:《系统工程与电子技术》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东北大学信息科学与工程学院,辽宁沈阳110004
  • 相关基金:国家自然科学基金重点项目资助课题(70431003)
中文摘要:

针对分类决策树构造时最优属性选择困难、难以适合大规模数据集的问题,提出新的属性选择标准——属性分类重要性测度,引入置信度和支持度,设计了基于变精度粗集理论的决策树算法。分类重要性测度可全面刻画属性的综合分类能力,且计算比信息增益简单。决策树生长过程中引入支持度和置信度,以控制决策树的生长,提高决策树对噪声数据集和不相容数据集的处理能力,减小决策树的规模。通过对UCI上5个不同规模和类型的数据集进行测试计算,结果表明算法效率高于ID3算法,与UCI报告的最好结果相当。

英文摘要:

Considering difficulty of choosing the best attribute and dealing with large-scale data set in constructing classifying decision tree, a new selection criterion called importance measure of attributes' classification (IMAC) and a decision tree constructing algorithm based on VPRS are proposed. The IMAC can describe classification capabilities of attributes comprehensively, and is simpler than traditional information entropy in calculation. In order to control growing up of the decision tree, confidence and support are introduced in algorithm ; it can not only reduce the size of decision tree but also enhance the capability of decision tree in processing noise data and incompatible data. The proposed algorithm is tested with five different size and type of data sets in the UCI, the results show that proposed method is more efficient than ID3 algorithm, and equal to the best results of the UCI.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统工程与电子技术》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会
  • 主编:施荣
  • 地址:北京142信箱32分箱
  • 邮编:100854
  • 邮箱:xtgcydzjs@126.com
  • 电话:010-68388406
  • 国际标准刊号:ISSN:1001-506X
  • 国内统一刊号:ISSN:11-2422/TN
  • 邮发代号:82-269
  • 获奖情况:
  • 全国中文核心期刊,全国优秀科技期刊,中国科技论文统计用刊,中国期刊方阵“双百”期刊
  • 国内外数据库收录:
  • 德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:34341