讨论了Π_2空间上交换J-von Neumann代数 的二次换位 ″,证明了若存在 中的J-自伴算子A,使得A具有复值谱点,则 = ″.并且举例说明该结论不能推广至Π_k(k〉2)空间.
Let be a commutative J-von Neumann algebra onⅡ_2 spaces.The double commutant of is discussed in this paper.The authors show that = if there exists a J-selfadjoint operator A∈ such that A has complex spectral points.Moreover,the authors point out that this theorem can not be generalized toⅡ_k(k2)spaces by an example.