建立了声表面波实现多基片间输运微流体的新方法。由3个1280YX-LiNbO3压电基片组成,一个基片为接口基片,另两个为工作基片,每个基片光刻一个中心频率为27.5 MHz叉指换能器和一个反射栅。采用微量进样器将待输运的数字微流体进样到工作基片2,调节接口基片使得其与工作基片2位于同一高度,并使其间隙尽可能小,在工作基片2的叉指换能器上施加声同步频率经放大后的RF信号,激发声表面波,驱动数字微流体到达接口基片。再采用类似方法将接口基片中数字微流体输运到工作基片1,完成两个工作基片间的输运。实现了不同工作基片上的数字微流体的混合及化学反应。
A new method for transporting digital micro-fluids among multi chips has been proposed based on surface acoustic wave(SAW).It is composed of three piezo-electric chips: one is an interface chip and the others are working chips.Each chip has an interdigital transducer(IDT) with 27.5 MHz center frequency and a reflector,which are fabricated on 1280YX-cut lithium niobate(LiNbO3) substrate.A digital micro-fluid to be transported was first pipetted onto the working chip 2 by a micro-syringe.After the interface chip was adjusted to the same height with the working chip 2 and their gap was as small as possible,an amplified RF signal with 27.5 MHz frequency was applied to the IDT of the working chip 2.The IDT radiated SAW and the digital micro-fluid was actuated to the interface chip.Then the digital micro-fluid was transported from the interface chip to the working chip 1 using the similar method.Two digital micro-fluids on different working chips had successfully been mixed and react based on SAW.