In this study, diphenyl sulfide(Ph2S) was employed to prepare a series of Ph2S-modified Pd/C catalysts(Pd–Ph2S/C). Catalyst characterization carried out by Brunner–Emmet–Teller(BET), energy dispersive spectrometer(EDS), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and CO chemisorption uptake measurements suggested a chemical interaction between Ph2 S and Pd. The ligand was preferably absorbed on the active site of Pd metal but after increasing the amount of Ph2 S, the adsorption of Ph2 S on Pd metal tended to be saturated and the excess of Ph2 S partially adsorbed on the activated carbon. A part of Pd atoms without adsorbing any Ph2 S still existed, even for the saturated Pd–Ph2S/C catalyst. The Pd–Ph2S/C catalysts exhibited a good selectivity of p-chloroaniline(p-CAN) in the hydrogenation of p-chloronitrobenzene(p-CNB). However,the chemisorption between Ph2 S and Pd was not so strong that part of Ph2 S was leached from Pd–Ph2S/C catalyst during the hydrogenation, which caused the decline of the selectivity of p-CAN over the used Pd–Ph2S/C catalyst.Resulfidation of the used Pd–Ph2S/C catalyst was effective to resume its stability, and the regenerated Pd–Ph2S/C catalyst could be reused for at least ten runs with a stable catalytic performance.
In this study, diphenyl sulfide(Ph2S) was employed to prepare a series of Ph2S-modified Pd/C catalysts(Pd–Ph2S/C). Catalyst characterization carried out by Brunner–Emmet–Teller(BET), energy dispersive spectrometer(EDS), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and CO chemisorption uptake measurements suggested a chemical interaction between Ph2 S and Pd. The ligand was preferably absorbed on the active site of Pd metal but after increasing the amount of Ph2 S, the adsorption of Ph2 S on Pd metal tended to be saturated and the excess of Ph2 S partially adsorbed on the activated carbon. A part of Pd atoms without adsorbing any Ph2 S still existed, even for the saturated Pd–Ph2S/C catalyst. The Pd–Ph2S/C catalysts exhibited a good selectivity of p-chloroaniline(p-CAN) in the hydrogenation of p-chloronitrobenzene(p-CNB). However,the chemisorption between Ph2 S and Pd was not so strong that part of Ph2 S was leached from Pd–Ph2S/C catalyst during the hydrogenation, which caused the decline of the selectivity of p-CAN over the used Pd–Ph2S/C catalyst.Resulfidation of the used Pd–Ph2S/C catalyst was effective to resume its stability, and the regenerated Pd–Ph2S/C catalyst could be reused for at least ten runs with a stable catalytic performance.