位置:成果数据库 > 期刊 > 期刊详情页
剪枝与欠采样相结合的不平衡数据分类方法
  • ISSN号:1001-3695
  • 期刊名称:计算机应用研究
  • 时间:2012.3.3
  • 页码:847-848
  • 分类:TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]安徽大学数学科学学院,合肥230601
  • 相关基金:国家自然科学基金资助项目(71071002); 安徽省教育厅自然科学基金资助项目(05010428); 安徽大学人才队伍建设项目,安徽大学学术创新团队项目(KJTD001B)
  • 相关项目:基于广义诱导不确定信息集成算子的区间型组合预测方法及其应用研究
中文摘要:

通过剪枝技术与欠采样技术相结合来选择合适数据,以提高少数类分类精度,研究欠采样技术在不平衡数据集环境下的影响。结果表明,与直接欠采样算法相比,本文算法不仅在accuracy值上有所提高,更重要的是大大改善了g-means值,特别是对非平衡率较大的数据集效果会更好。

英文摘要:

This paper proposed pruning and under-sampling combined approaches for selected the representative data as training data to improve the classification accuracy for minority class and investigated the effect of under-sampling methods in the imbalanced class distribution environment. The experimental results show that the accuracy of algorithm of this paper compare with direct undersampling algorithm have increased, the most important is to significantly improve the g-means' value. Especially, the effect will be better on the imbalance rate of larger data sets.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049