相对于单层电极结构,优化的前表面双层电极能够明显减小功率损失,改善晶体硅太阳电池的电学特性.本文对晶体硅太阳电池的双层电极进行了优化分析和实验研究.通过扫描电子显微镜观测将双层电极的截面抽象为更接近于实际的半椭圆型,建立了太阳电池前表面的双层电极模型,理论分析了双层电极的电学损失和光学损失.结合丝网印刷后光诱导电镀太阳电池的实验,得到了理论和实验上的最优化光诱导电镀增厚电极厚度与丝网印刷电极宽度的关系.所得到的理论和实验结果符合良好.由于并不涉及电极制备的具体技术,双层电极理论模型普遍适用于多种类型的双层电极结构.
Compared with single-layer contact,optimized two-layer contact of front side could diminish power losses distinctly and improve the electrical performance of crystalline silicon solar cell.In this paper,the optimized analysis and experimental study for two-layer contact of crystalline silicon solar cell are carried out.The model of two-layer contact is established by abstracting the crosssection of two-layer contact into semi-elliptical shape closer to the realistic situation according to the SEM observation.The electrical losses and the optical losses of two-layer contact are analyzed in theory.In combination with experimental screen-printed contact thickened by light-induced electroplating solar cell,the relationship between the optimum thickening contact thickness by light-induced electroplating and the screen-printed contact width is achieved in theory and experiment.The corresponding theory and experimental results are in good agreement with each other.Due to involving no concrete technology of contact preparation,the theoretical model of two-layer contact is generally appticable for many types of two-layer contact structures in consequence.