位置:成果数据库 > 期刊 > 期刊详情页
概率图模型推理方法的研究进展
  • ISSN号:1002-137X
  • 期刊名称:《计算机科学》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中国石油大学北京自动化研究所,北京102249
  • 相关基金:国家重点基础研究发展计划项目(973计划)(2012CB720500); 国家自然科学基金项目(21006127); 中国石油大学(北京)基础学科研究基金项目(JCXK-2011-07)资助
中文摘要:

近年来概率图模型已成为不确定性推理的研究热点,在人工智能、机器学习与计算机视觉等领域有广阔的应用前景。根据网络结构与查询问题类型的不同,系统地综述了概率图模型的推理算法。首先讨论了贝叶斯网络与马尔可夫网络中解决概率查询问题的精确推理算法与近似推理算法,其中主要介绍精确推理中的VE算法、递归约束算法和团树算法,以及近似推理中的变分近似推理和抽样近似推理算法,并给出了解决MAP查询问题的常用推理算法;然后分别针对混合网络的连续与混合情况阐述其推理算法,并分析了暂态网络的精确推理、近似推理以及混合情况下的推理;最后指出了概率图模型推理方法未来的研究方向。

英文摘要:

In recent years,probabilistic graphical models have become the focus of the research in uncertainty inference,because of their bright prospect for the application in artificial intelligence,machine learning,computer vision and so forth.According to different network structures and query questions,the inference algorithms of probabilistic graphical models were summarized in a systematic way.First,exact and approximate inference algorithms for solving the probability queries in Bayesian network and Markov network were discussed,including variable elimination algorithms,conditioning algorithms,clique tree algorithms,variational inference algorithms and sampling algorithms.The common algorithms for solving MAP queries were also introduced.Then the inference algorithms in hybrid networks were described respectively for continuous or hybrid cases.In addition,this work analyzed the exact and approximate inference in temporal networks,and described inference in continuous or hybrid cases for temporal networks.Finally,this work raised some questions that the inference algorithms of probabilistic graphical models are facing with and discussed their development in the future.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机科学》
  • 北大核心期刊(2011版)
  • 主管单位:重庆西南信息有限公司(原科技部西南信息中心)
  • 主办单位:重庆西南信息有限公司(原科技部西南信息中心)
  • 主编:陈国良
  • 地址:重庆市渝北区洪湖西路18号
  • 邮编:401121
  • 邮箱:jsjkx12@163.com
  • 电话:023-63500828
  • 国际标准刊号:ISSN:1002-137X
  • 国内统一刊号:ISSN:50-1075/TP
  • 邮发代号:78-68
  • 获奖情况:
  • 2001年重庆市优秀期刊,2004年第三届重庆市优秀科技期刊,2005年重庆市优秀期刊编辑部,2010年第六届重庆市期刊综合质量考核"十佳科技期刊",2012年重庆市出版专项资金报刊资助项目(重庆市新...,2013年重庆市出版专项资金重点学术期刊资助项目(...,2014年重庆市出版专项资金期刊资助项目(重庆市文...,2015年"中国国际影响力优秀学术期刊"
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国乌利希期刊指南,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:41227