造在第二等、主要的变量之间的动态、静态的关系的进程通常集成于大多数非线性的动态软传感器模型。然而,如此的集成限制软传感器模型的评价精确性。维纳模型有效地在串联与动态、静态的 submodels 的结构描述一个系统的动态、静态的特征。我们建议一个软传感器模型源于维纳模型结构,它是维纳模型的延期。在第二等、主要的变量之间的动态、静态的关系分别地被造描述系统的动态、静态的特征。这个模型的可行性被验证。然后,分离模型的表达式为软传感器系统被导出。结合坡度算法被使用或者识别动态、静态的模型参数。为软传感器系统的相应更改方法也被给。案例研究证实建议模型,交替的鉴定算法,和更改方法的有效性。
The processes of building dynamic and static relationships between secondary and primary variables are usually integrated in most of nonlinear dynamic soft sensor models. However, such integration limits the estimation accuracy of soft sensor models. Wiener model effectively describes dynamic and static characteristics of a system with the structure of dynamic and static submodels in cascade. We propose a soft sensor model derived from Wiener model structure, which is an extension of Wiener model. Dynamic and static relationships between secondary and primary variables are built respectively to describe the dynamic and static characteristics of system. The feasibility of this model is verified. Then the expression of discrete model is derived for soft sensor system. Conjugate gradi-ent algorithm is applied to identify the dynamic and static model parameters alternately. Corresponding update method for soft sensor system is also given. Case studies confirm the effectiveness of the proposed model, alternate identification algorithm, and update method.