位置:成果数据库 > 期刊 > 期刊详情页
具有无穷时滞退化微分系统的周期解
  • 期刊名称:数学研究
  • 时间:0
  • 页码:272-279
  • 语言:中文
  • 分类:O175.12[理学—数学;理学—基础数学]
  • 作者机构:[1]安庆师范学院数学与计算科学学院,安徽安庆246011, [2]安徽大学数学科学学院,安徽合肥230039
  • 相关基金:国家自然科学基金(10771001),教育部科学技术研究重点项目基金(205068),安徽省教育厅自然科学研究项目基金(KJ2008B152),安徽大学创新团队项目基金资助
  • 相关项目:退化时滞微分系统若干问题研究
作者: 蒋威|张海|
中文摘要:

讨论具有无穷时滞的非线性退化微分系统E(t)x^·(t)=A(t)x(t)+∫-∞^0H(t,s)x(t+s)ds+f(t,xt)的周期解问题.利用矩阵测度和Krasnoselskii不动点定理获得了系统存在周期解的充分条件,并且实例说明了所得结果的有效性.

英文摘要:

In this paper, we discuss the periodic solutions of nonlinear degenerate differential systems with infinite delay of the following E(t)x^·(t)=A(t)x(t)+∫-∞^0H(t,s)x(t+s)ds+f(t,xt) Using the matrix measure and Krasnoselskii's fixed point theorem, the sufficient conditions of the existence of periodic solutions are obtained, and art example is also given to illustrate the validity of the results.

同期刊论文项目
期刊论文 96 会议论文 2
同项目期刊论文