对于奇素数 p 和正整数n ,设 zn = min {m m ∈ N,n^pm ≡1(mod (n +1)p )},称为 n 的 Smarandache p 次方阶数。运用初等方法给出了 zn 的计算公式,并且纠正了现有结果中的错误。
For any odd prime p and any positive integer n,let zn = min {m m ∈ N,npm ≡1(mod (n + 1)p )},which is called the Smarandache Orders of p-th Power of n.In this paper,using some elementary methods,a formula of zn is given and certain wrong conclusions in previous results are corrected.