对于正整数n,设δ(n)是n的约数之和.设x,y是适合x〉y以及gcd(x,y)=1的正整数,a=x^2^x+y^2^x).证明了如果xy是奇数,则不存在正奇数b可使δ(a)=δ(b)=a+b.
For any positive integer,let δ(n) denote the sum of divisors of n.Let x,ybe positive integer such that xyand gcd(x,y)=1,and let a=x^2^x+y^2^x.In this paper,we prove that if xyis odd,then there does not exist a posive odd integer b satisfying δ(a)=δ(b)=a+b.