设p是一个奇素数且满足3|(p-1)。对任意整数k1及k2且满足(k1k2,p)=1,设N(k1,k2;p)表示同余方程k1x^3+k2y^3≡1mod p的解的个数,其中0≤x,y≤p-1。该文的主要目的是利用解析方法,高斯和的性质以及S.Chowla,J.Cowles和M.Cowles等人的重要工作研究N(k1,k2;p)的计算问题,并给出它的一个精确的计算公式,同时提出几个未解决的问题。
Let p be an odd prime with 3 |( p- 1). For any integers k1 and k2with( k1k2,p) = 1,let N( k1,k2;p) denotes the number of the solutions of the congruence equation k1x^3+ k2y^3≡1 mod p with 0≤x,y≤p- 1.The main purpose of this paper is using the analytic method,the properties of Gauss sums and S. Chowla andothers' important work to study the computational problem of N( k1,k2; p),and giving an exact calculating formula for it. At the same time,several open problems are also proposed.