主要利用同余式、Pell方程的解的性质、递归序列、平方剩余等理论得出了如下结果:(1)p≡q≡1(mod 6)为奇素数,(p/q)=-1,pq≡19(mod 24),或p≡1(mod 24),q≡13(mod 24)时,Diophantine方程x^3-1=6pqy^2仅有平凡解(x,y)=(1,0);(2)p≡q≡1(mod6)为奇素数,(p/q)=-1,且pq≡7(mod 24),或p≡1(mod 24),q≡13(mod2 4)时,Diophantine方程x^3+1=6pqy^2仅有平凡解(x,y)=(-1,0).
Using congruence,some properties of the solutions to Pell equation,recursive sequence and quadratic residue,it is proved that the only solution in integers of Diophantine equation x^3-1=6pqy^2 is x=1,y=0 when p,qare odd primes with p≡q≡1(mod 6),(p/q)=-1and pq≡19(mod 24),or p≡1(mod 24),q≡13(mod 24).In addition,we find that the only solution in integers of Diophantine equation x^3+1=6pqy^2 is x=-1,y=0when p,q are odd primes with p≡q≡1(mod 6),(p/q)=-1and pq≡7(mod 24),or p≡1(mod 24),q≡13(mod 24).