本文研究主对角元为常数的无穷维Hamilton算子的特征值问题.基于次对角元乘积的特征值和特征向量的某些性质,刻画此类Hamilton算子特征值分布、特征值的代数指标、特征向量(或一阶根向量)的辛正交关系及特征向量组和根向量组在辛Hilbert空间中完备的充要条件.
This paper deals with the eigenvalue problem of the Infinite-Dimensional Hamiltonian operators with the diagonal elements being constant. Based on certain properties of their eigenvalues and eigenvectors of the product of the off-diagonal elements , the location of their eigenvalues, symplectic orthogonal relationship between eigen or root vectors, and the completeness of the eigen or root vectors system are characterized.