设G为有限群,o1(G)表示G中最高阶元素的阶。用群的阶及最高阶元素的阶刻画了单群F4(2),2 E6(2)和O+10(2)。即证明了:设G为有限群,M为单群:F4(2),2 E6(2)和O+10(2),则G≡M当且仅当|G|=|M|,且o1(G)=o1(M)。
Let G be a finite group, ol (G) denote the largest element order of G. This paper shows that F4 (2), 2E6 (2) ,O+10 (2) can be uniquely determined only by using group order and the largest element order. That is to say, we proves that: Let G be a finite group,M be one of the following simple groups: F4 (2) ,2E6 (2) ,O+10 (2). Then G≡M if and only if | G| = |M| , and 01 (G) =01 (M).