探讨了一类有限p-中心p-群,得到了:若G是p-中心p-群且G∈BI(p^m),其中m=2n+e,e=0,1.则有下面的结论成立:G^pm≤Z(G);如果e=0,则G^pn是交换群,如果e=1,则G^pn+1是交换群;cl(G)≤m+1.
In this paper,we have studied a class of finite p-central p-groups.We prove that:If Gbe a finite p-central p-group with G ∈BI(pm),where m =2n+e,e=0,1,then the followings hold:Gp m ≤Z(G); If e=0,then Gp m is abelian,if e=1,then Gp n+1