位置:成果数据库 > 期刊 > 期刊详情页
有序Banach空间中非线性二阶积一微分方程的正周期解
  • ISSN号:0490-6756
  • 期刊名称:《四川大学学报:自然科学版》
  • 时间:0
  • 分类:O177.91[理学—数学;理学—基础数学]
  • 作者机构:[1]西北师范大学数学与信息科学学院,兰州730070
  • 相关基金:国家自然科学基金(10871160);甘肃省自然科学基金(0710RJZA103)
中文摘要:

作者讨论了有序Banach空间中非线性二阶积-微分方程u″(t)+Mu(t)一f(t,u(r),(Su)(r))正-周期解的存在性.利用凝聚映射的不动点指数定理,作者在非线性项满足较容易验证的序条件下获得了若干该问题正ω-周期解的存在性定理.这些结果将有限维空间中的部分结果推广到了无穷维空间中.

英文摘要:

By using the fixed point index theorem of condensing mapping, under more general conditions on nonlinear term, some existence results o{ positive co-periodic solutions for nonlinear second-order integro-differential equation u"(t)+Mu(t) = f(t, u(t), (Su)(t)) are obtained in ordered Banach spaces. These results partially extend the results in finite-dimensional spaces to that in infinite-dimensional spaces.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《四川大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:四川大学
  • 主编:刘应明
  • 地址:成都九眼桥望江路29号
  • 邮编:610064
  • 邮箱:
  • 电话:028-85410393 85412393
  • 国际标准刊号:ISSN:0490-6756
  • 国内统一刊号:ISSN:51-1595/N
  • 邮发代号:62-127
  • 获奖情况:
  • 国家“双效”期刊,四川省十佳科技期刊,教育部全国高校优秀学报二等奖(1995,1999),四川省科技优秀期刊一等奖(1996,2000)
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国生物科学数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10542