利用Williamsleggett定理研究Sturm—Liouville二阶边值系统 u″(t)+f(u(t),v(t))=0, v″(t)+g(u(t),v(t))=0, α1u(0)-β1u(0)=0,γ1u(1)+δ1u(1)=0 α2v(0)-β2v(0)=0,γ2v(1)+δ2v(1)=0 得到了至少有3个正解的存在性结果.
Using Williams-leggett theorem,the following Sturm-Liouville boundary value system u″(t)+f(u(t),v(t))=0, v″(t)+g(u(t),v(t))=0, α1u(0)-β1u(0)=0,γ1u(1)+δ1u(1)=0 α2v(0)-β2v(0)=0,γ2v(1)+δ2v(1)=0 is discussed, and the existence of three positive solutions for this systems is given.