借助Henstock—Kurzweil积分,在建立了一类滞后脉冲微分方程有界变差解存在性定理的基础上,建立其解的唯一性定理并给出证明.这个结果将唯一性定理从Lebesgue积分意义下推广到Henstock-Kurzweil积分意义下.
In this paper, based on the existence theorem of bounded variation solution for impulsive retarded functional differential equations, using the Henstock-Kurzweil integral we establish the uniqueness theorem of bounded variation solution for these equations. This result generalizes theorem concerning uniqueness in Lebesgue integral setting to a Henstock-Kurzweil integral setting.