任意nεN,著名的Euler函数φ(n)定义为不大于n且与n互素的正整数的个数.而Smarandache可乘函数S1(n)定义为S1(1)=1,如果n〉1.且p^α1 1 p^α2 2…p^αk k为n的标准素因数分解式,其中P1〈p2〈…〈pk.则S1(n)=max{αipi}.研究方程S1(n)=φ(n)的可解性,并给出了该方程的所有正整数解.
For any given positive integer n ≥ 1, the Euler funcion φ(n) is defined to be the number of positive integers not exceeding n which are relatively prime to n. A Smarandache muhiplicative function S1 (n) is defined as S1 (1) = 1. If n =p^α1 1 p^α2 2…pαk k is the factorization of n into prime powers,where p1 〈P2 〈 … 〈Pk ,then S1 (n) = max {αipi}). In this paper,the solvability of the equation of S1 (n) = φ(n) is studied, and all its solutions are given.