设p为奇素数,x为整数且满足1≤x≤p-1.定义数列xn={{n^-+n+x^-/p}0,},如果pn(n+x),其它,以及en={+1,如果p|n(n+x)且0≤{n^-+n+x^-}〈1/2,-1,如果p|n(n+x)且1/2≤{n^-+n+x^-}〈1,+1,如果p|n(n+x),其中n^-是n模p的乘法逆,满足nn^-≡1 mod p以及1≤n^-≤p-1.证明了(xn)是一致分布数列,(en)是好的伪随机数列.这表明在二进制数列与[0,1)数列之间存在某种联系.
Let p be an odd prime, and x be an integer with1≤x≤p-1.Define xn={{n^-+n+x^-/p},0,if p|n(n+x),otherwise and en={+1,if p|n(n+x)and 0≤{n^-+n+x^-}〈1/2,-1,is p|n(n+x)and 1/2≤{n^-+n+x^-}〈1,+1,is p|n(n+x), where n^- is the multiplicative inverse of n modulo p such that 1≤n^-≤ p - 1. This paper proves that (xn) is uniformly distributed modulo 1, and (en) is a "good" pseudorandom sequence. This shows that there are some links between finite binary sequences and [0, 1) sequences.