位置:成果数据库 > 期刊 > 期刊详情页
前视声呐多特征自适应融合跟踪方法
  • ISSN号:1006-7043
  • 期刊名称:《哈尔滨工程大学学报》
  • 时间:0
  • 分类:TP39[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工程大学水下机器人技术重点实验室,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(51009040\E091002).
中文摘要:

为了提高基于前视声呐的水下多目标跟踪精度,在粒子滤波跟踪的基础上,采用多特征自适应线索融合策略,通过在线调整特征融合方法计算粒子权值,提取出每个粒子对应模板的多个特征,包括形状与亮度特征、不变矩数字特征和灰度共生矩阵数字特征。采用自适应融合策略对粒子的各个特征权值进行融合得到最终权值,特征线索良好时采用乘性融合策略,否则采用基于模糊逻辑的加权融合策略。采用2组前视声呐水池试验序列图像,通过与传统融合策略进行对比试验,验证了自适应融合策略的有效性,对于实现水下智能机器人的自主跟踪具有重要的意义。

英文摘要:

In order to improve the accuracy of underwater multi-object tracking based on the forward looking sonar, on the basis of particle filter tracking, the multi-feature adaptive clue fusion method was used to switch fusion meth-ods by adjusting features online to calculate the particle weight. Particles were initialized. Then multiple features of the template corresponding to every particle were extracted, including the basic object shape and intensity features, digital features of moment invariants and digital features of the gray level co-occurrence matrix. The final particle weight was obtained by fusing every feature weight using the adaptive fusion method. Multiplicative fusion was a-dopted when the features worked well;otherwise weighted sum fusion based on fuzzy logic was adopted. Sequence images through a tank experiment were used to verify the effects of the adaptive fusion method, in contrast to the traditional fusion methods. The images were obtained by using the forward looking sonar, describing two cross mo-tions. The tracking ability using the adaptive fusion method was found to be better. This method has significant ef-fectiveness for automatically tracking autonomous underwater vehicles.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工程大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工程大学
  • 主编:杨士莪
  • 地址:哈尔滨市南岗区南通大街145号1号楼
  • 邮编:150001
  • 邮箱:xuebao@hrbeu.edu.cn
  • 电话:0451-82519357
  • 国际标准刊号:ISSN:1006-7043
  • 国内统一刊号:ISSN:23-1390/U
  • 邮发代号:14-111
  • 获奖情况:
  • 工信部科技期刊评比"优秀期刊奖",中国高校科技期刊评比"精品期刊奖","北方十佳期刊奖",首届黑龙江省政府出版奖--优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:11823