位置:成果数据库 > 期刊 > 期刊详情页
基于2维Tsallis熵的水下图像目标检测
  • 期刊名称:机器人
  • 时间:0
  • 页码:289-297
  • 分类:TP242[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]哈尔滨工程大学水下机器人技术国防科技重点实验室,黑龙江哈尔滨150001
  • 相关基金:国家863计划资助项目(2008AA092301); 国家自然科学基金资助项目(50909025/E091002); 中国博士后科学基金资助项目(20080440838); 黑龙江省博士后基金资助项目; 哈尔滨工程大学基础研究基金资助项目(HEUFT08001 HEUFT08017); 水下智能机器人技术国防科技重点实验室开放课题研究基金资助项目(2007001 2008003)
  • 相关项目:智能水下机器人的水下地形匹配导航方法研究
中文摘要:

针对传统图像检测方法在水下图像处理过程中存在目标区域定位不准确、目标细节丢失、目标形状变形的问题,文中利用Tsallis熵的非广延性,提出了一种基于边缘信息的2维直方图,并以最大2维Tsallis熵为准则,利用改进粒子群优化算法寻找最佳阈值.水下图像处理试验表明,该算法是一种有效的水下图像目标检测方法,与传统方法相比,具有更强的自适应性和鲁棒性.

英文摘要:

For the problems in underwater image processing by traditional image detection methods,such as inaccurate location of objects regions,loss of object details and distortion of object shape,etc.,a new two-dimensional histogram based on edge information is proposed by utilizing the non-extensive property of Tsallis entropy.The improved particle swarm optimization(PSO) is used to search the best threshold value by maximizing the two-dimensional Tsallis entropy.The test results of some underwater images show that it is efficient to detect objects in underwater images.Comparing with traditional methods,the proposed approach shows better adaptability and robustness.

同期刊论文项目
期刊论文 41 会议论文 9 专利 6 著作 1
同项目期刊论文