位置:成果数据库 > 期刊 > 期刊详情页
基于支持向量回归机的自适应差分滤波算法研究
  • ISSN号:1006-2467
  • 期刊名称:《上海交通大学学报》
  • 时间:0
  • 分类:TP242.6[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]哈尔滨工程大学自动化学院,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金(E091002/50979017); 教育部高等学校博士学科点专项科研基金(20092304110008); 中央高校基本科研业务费专项资金(HEUCFZ 1026); 哈尔滨市科技创新人才(优秀学科带头人)研究专项资金项目(2012RFXXG083)
中文摘要:

针对差分滤波(DDF)算法存在因噪声统计特性与实际不符而导致的滤波精度降低甚至发散的问题,提出了一种基于支持向量回归机的自适应差分滤波(SVRADDF)算法.将测量值的新息协方差与理论协方差之间的差值作为支持向量回归机的输入、输出调节噪声统计特征的自适应因子,实时修正DDF噪声协方差,根据实际噪声变化调整噪声协方差矩阵,从而提高滤波精度.针对水下目标纯方位角跟踪系统的蒙特卡洛仿真实验表明,在相同初始噪声特性条件下,所提出的SVRADDF算法具有较好的估计效果和鲁棒性,估计精度、稳定性及收敛时间等性能明显优于单纯DDF算法.

英文摘要:

To solve the low filtering accuracy problem of the divided difference filter (DDF) algorithm, this paper proposed an support vector regression based adaptive divided difference filter (SVRADDF) algorithm. The difference between the measurement innovation covariance and theory covariance matrix were used as the adaptive factor of the input and output of the support vector regression machine for real-time correction of the DDF noise covariance and the adjustment of the noise covariance matrix according to the actual noise changes, so as to improve the filter precision. Monte Carlo simulation for underwater target bearing-only tracking systems indicates that, with the same initial noise conditions, the proposed SVRAD- DF algorithm has a better estimation performance and robustness. The accuracy, stability and covergenee time are significantly better than the DDF algorithms.

同期刊论文项目
期刊论文 56 会议论文 26 获奖 1 专利 11 著作 1
同项目期刊论文
期刊信息
  • 《上海交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:上海交通大学
  • 主编:郑杭
  • 地址:上海市华山路1954号15F
  • 邮编:200030
  • 邮箱:shjt@chinajournal.net.cn
  • 电话:021-62933373 62932534
  • 国际标准刊号:ISSN:1006-2467
  • 国内统一刊号:ISSN:31-1466/U
  • 邮发代号:4-256
  • 获奖情况:
  • 1996年全国优秀科技期刊奖,1992年、1996年、1999年国家教育部系统优秀科技期刊奖,2002年“百种重点期刊奖”,2003年百种中国杰出学术期刊,2004年教育部全国高校优秀科技期刊一等奖,2004年“百种重点期刊奖”
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:30903