设X是维数大于2的Banach空间.讨论B(X)上的线性广义ξ-Lie导子δ(ξ≠0,-1)的结构,采用了纯代数计算的方法,得到了当ξ=1时,δ=φ+τ,其中φ为广义导子,:τB(X)→CI为线性映射,并且当AB为不等于I的固定幂等元时,有τ([A,B])=0;当ξ≠1时,δ=ψ+Φ,其中ψ为左中心化子,Φ为内导子.
Let X be a Banach space of dimension greater than 2.It is disscussed that the structure of linear generalized ξ-Lie derivations δ(ξ ≠0,-1) on B(X) in a pure algebraic computation,then δ=φ+τ with ξ=1,where φ is a generalized derivation,τ:B(X)→CI is a linear map vanishing at commutators with AB≠I and AB is a fixed idempotent;δ=ψ+Φ with ξ≠1,where ψ is a left centralizer,Φ is an inner derivation.