讨论了离散时间正奇异系统的可容许性问题, 系统的可容许性是指系统是正则的、 因果的、 稳定的。首先根据离散时间正奇异系统稳定性的一个李亚普诺夫不等式条件( E ^DA ^) TP( E ^DA ^) -P〈0, 利用线性矩阵不等式的方法, 给出其可容许的一个充要条件; 进一步讨论了如果一个离散正奇异系统存在单项分解, 利用矩阵分解的方法, 给出它可容许的一个充要条件: 对任给的正定矩阵Y, 存在对角半正定矩阵X 满足李亚普诺夫方程A^TX A-E^TX E+E^T Y E=0和秩条件r a n k( E^TX E) = r。最后给出实例验证结论的可行性。
The admissibility of positive discrete-time singular system is discussed in this paper, if a system is regular, causal, sta- ble, we call it admissible. Firstly, according to the Lyapunov inequality ( E ^DA ^) TP( E ^DA ^) -P〈0, which is a condition of stability for the positive discrete-time singular system, a necessary and sufficient condition for the system to be admissible are expressed in Linear Matrix Inequalities terms. Furthermore, suppose the system has a monomial decomposition, it is admissible if and only if there exists a positive definite diagonal matrix X and a positive definite matrix Y such that A^TX A-E^TX E+E^T Y E=0 and r a n k( E^TX E) = r, Finally, numerical example is given to illustrate the validity of the proposed conditions.