设M是包含非平凡投影P的单位素环.利用算子论方法证明了:如果φ:M→M是非线性Lie中心化子,则存在λ∈?及映射ξ:M→?满足ξ([A,B])=0(?A,B∈M),使得对任意的X∈M,有φ(X)=λX+ξ(X)I.
Let M be a unital prime ring containing a nontrivial proj ection P.With some methods of operator theory,it is shown that ifφ:M→M is a nonlinear Lie centralizer,then there exist a scalarλand a mapξ:M→? to meet withξ([A,B])=0 (?A,B∈M)so thatφ(X)=λX+ξ(X)I for all X∈M.