设τ(N)是复可分Hilbert空间H上的套代数,(Ф,ψ)是套代数τ(N)上的线性映射对。若对任意A,B∈τ(N)且AB=0,有Ф(AR)=Ф(A)B+Aψ(B)成立,则(Ф,ψ)是广义内导子对。
Let τ(N) be any nest algebra on a complex and separable Hilbert space H, and (Ф,ψ) be a pair of linear mappings of τ (N). We prove that if ( Ф,ψ ) satisfies Ф ( AB ) = Ф ( A ) B + Aψ ( B ) for all A, B ∈τ (N) with AB = 0, then (Ф,ψ) is a pair of generalized inner derivations.