实对称矩阵代数是一个Euclidean Jordan代数,为了证明实对称矩阵代数上Jordan映射的可加性,根据Eu-clidean Jordan代数的相关知识进行推导证明。主要结论是:设A是一实对称矩阵代数,若从A到它自身的双射Φ满足Φ(X·Y)=Φ(X)·Φ(Y),对任意的X,Y∈A都成立,则Φ是可加的。
The aim of the article is to verify that the additivity of Jordan map on symmetric matrices algebra is valid. Because real symmetric matrices algebra is a Euclidean Jordan algebra, so the paper shows it by acknowledge of Euclidean Jordan algebra. The main result is: let A be real symmetric matrices algebra,φ:A→A be a bijection. If φ satisfies φ(X·Y)=φ(X)·φ(Y) for any X,Y∈A, then φ is additive.