利用Ben—Tal广义代数运算定义了(h,φ)-η不变凸函数、类型Ⅰ(h,φ)-η不变凸函数和广义Kuhn—Tucker条件。当目标函数和约束函数均为(h,φ)-可微时,构造了一个线性规划问题,利用非对称对偶的性质得到了(h,φ)-η不变凸规划的(h,φ)-η不变凸函数和广义Kuhn—Tucker条件之间的关系。
The (h,φ) -η invex function, Type I (h,φ) -η invex function and the generalized Kuhn -Tucker condition are introduced with the help of Ben - Tal generalized algebraic operations. When the objective function and constraint functions are ( h, φ) - differentiable, the relationship between the generalized Kuhn - Tucker condition and the (h,φ) -η invex function is established by constructing a linear programming problem and utilizing nonsymmetric duality theory.