行波解是格动力系统的一种稳态解,通常决定着相应Cauchy问题的长时间渐近行为,揭示了格动力系统所包含的许多特性,如唯一性、稳定性等.而在考虑格动力系统的唯一性和稳定性时,通常需要了解其行波解的渐近行为.通过构造合适的上、下解,并结合系统所满足的比较原理,证明单稳型格动力系统在周期介质中的行波解的渐近行为.
Traveling wave solution is a steady-state solution of lattice dynamical system.Traveling wave solution usually determines the long time behavior of the corresponding Cauchy problems and reveals the system containing many features,such as uniqueness and stability.When considering the uniqueness and stability,we need to understand the asymptotic behavior of traveling wave solutions.By constructing an appropriate super-solution and sub-solution,and using the comparison principle and the extrusion technology,the asymptotic behavior of traveling waves for periodic monostable lattice dynamical system is proved.